logo
Назад Далее
Главная
Содержание
Ссылки
Студентам

Версия для печати

Содержание раздела
1. Классическое определение вероятности.Алгебра событий. 2. Теорема сложения и умножения вероятностей. 3. Формула полной вероятности и формула Байеса. 4. Биномиальное распределение и распределение Пуассона. 5. Законы распределения непрерывной случайной величины. 6. Нормальный закон распределения вероятностей. 7. Числовые характеристики дискретных и непрерывных случайных величин. 8. Случайные векторы (системы нескольких случайных величин). >> Дальше с 9 - 16
Лекция 7.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

     

Математическое ожидание.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

                                М(Х) = х1р1 + х2р2 + … + хпрп .                                             (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним, так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х – числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х. Из условия задачи следует, что Х может принимать значения 1, 2, 3.   Тогда

Пример 2. Определим математическое ожидание случайной величины Х – числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

       Х

        1

      2

      …

      п

      …

        р

      0,5

    (0,5)2

       …

     (0,5)п

      …

Тогда


..+

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

                                       Свойства математического ожидания.

1)      Математическое ожидание постоянной равно самой постоянной:

                                    М(С) = С.                                                                 (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М(С) = С·1 = С.

2)      Постоянный множитель можно выносит за знак математического ожидания:

                           М(СХ) = С М(Х).                                                            (7.3)

Доказательство. Если случайная величина Х задана рядом распределения

        xi

          x1

          x2

        …

       xn

        pi 

          p1

          p2

        …

       pn

то ряд распределения для СХ имеет вид:

        Сxi

          Сx1

          Сx2

        …

       Сxn

        pi 

          p1

          p2

        …

       pn

Тогда М(СХ) = Сх1р1 + Сх2р2 + … + Схпрп = С( х1р1 + х2р2 + … + хпрп) = СМ(Х).

Определение 7.2. Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы.

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3)      Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

                       M(XY) = M(X)M(Y).                                                         (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y  принимают только по два возможных значения:

        xi

          x1

          x2

          pi 

          p1

          p2

        уi

          у1

          у2

        gi 

          g1

          g2

Тогда ряд распределения для XY  выглядит так:

        ХY

          x1y1

          x2y1

       x1y2

       x2y2

        p

          p1g1

          p2 g1

       p1g2

       p2g2

Следовательно, M(XY) = x1y1·p1g1 + x2y1·p2g1 + x1y2·p1g2 + x2y2·p2g2 = y1g1(x1p1 + x2p2) +   + y2g2(x1p1 + x2p2) = (y1g1 + y2g2) (x1p1 + x2p2) = M(XM(Y).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается  методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых:

                        M (X + Y) = M (X) + M (Y).                                                (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y  являются х1 + у1, х1 + у2, х2 + у1, х2 + у2. Обозначим их вероятности соответственно как р11, р12, р21 и р22. Найдем М( Х +Y ) = (x1 + y1)p11 + (x1 + y2)p12 + (x2 + y1)p21 + (x2 + y2)p22 =

= x1(p11 + p12) + x2(p21 + p22) + y1(p11 + p21) + y2(p12 + p22).

Докажем, что р11 + р22 = р1. Действительно, событие, состоящее в том, что X + Y примет значения х1 + у1 или х1 + у2 и вероятность которого равна  р11 + р22, совпадает с событием, заключающемся в том, что Х = х1 (его вероятность – р1). Аналогично дока-зывается, что p21 + p22 = р2, p11 + p21 = g1, p12 + p22 = g2. Значит,

      M(X + Y) = x1p1 + x2p2 + y1g1 + y2g2 = M (X) + M (Y).

Замечание. Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М(Х1) = (1 + 2 + 3 + 4 + 5 + 6) Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4  М(Х)=

                                                      

Дисперсия.

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y, заданные рядами распределения вида

       Х

49

50

51

        р

0,1

0,8

0,1

     Y

0

100

     p

0,5

0,5

Найдем М(Х) = 49·0,1 + 50·0,8 + 51·0,1 = 50, М(Y) = 0·0,5 + 100·0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х  М(Х) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y  существенно отсто-ят от М(Y). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя  служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математи-ческое ожидание квадрата ее отклонения от ее математического ожидания:

                                            D(X) = M (XM(X))².                                                (7.6)

Пример.

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 – 2,4)2 = 1,96; (2 – 2,4)2 = 0,16; (3 – 2,4)2 = 0,36. Следовательно,

 

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1.    D(X) = M(X ²) – M ²(X).                                                                 (7.7)

Доказательство.

Используя то, что М(Х) – постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

   D(X) = M(XM(X))² = M(X² - 2X·M(X) + M²(X)) = M(X²) – 2M(XM(X) + M²(X) =

= M(X²) – 2M²(X) + M²(X) = M(X²) – M²(X), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y, рассмотренных в начале этого раздела. М(Х) = (492·0,1 + 502·0,8 + 512·0,1) – 502 = 2500,2 – 2500 = 0,2.

М(Y) = (02·0,5 + 100²·0,5) – 50² = 5000 – 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для  Y  это отклонение весьма существенно.

                                                         Свойства дисперсии.

1)      Дисперсия постоянной величины С равна нулю:

                                      D (C) = 0.                                                                      (7.8)

Доказательство. D(C) = M((CM(C))²) = M((CC)²) = M(0) = 0.

2)      Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

                                           D(CX) = C²D(X).                                                     (7.9)

Доказательство. D(CX) = M((CXM(CX))²) = M((CXCM(X))²) = M(C²(X –  M(X))²) =

= C²D(X).

3)      Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

                                           D(X + Y) = D(X) + D(Y).                                         (7.10)

Доказательство. D(X + Y) = M(X² + 2XY + Y²) – (M(X) + M(Y))² = M(X²) + 2M(X)M(Y) +

+ M(Y²) – M²(X) – 2M(X)M(Y) – M²(Y) = (M(X²) – M²(X)) + (M(Y²) – M²(Y)) = D(X) + D(Y).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4)      Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

                                       D(XY) = D(X) + D(Y).                                                     (7.11)

Доказательство. D(X – Y) = D(X) + D(-Y) = D(X) + (-1)²D(Y) = D(X) + D(X).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

                                             .                                                            (7.12)

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно

   

Числовые характеристики непрерывных случайных величин.

Распространим определения числовых характеристик случайных величин на непре-рывные случайные величины, для которых плотность распределения служит в некото-ром роде аналогом понятия вероятности.

Определение 7.7. Математическим ожиданием непрерывной случайной величины называется

                                                                                           (7.13)

Замечание 1. Общее определение дисперсии сохраняется для непрерывной случайной величины таким же, как и для дискретной (опр. 7.5), а формула для ее вычисления имеет вид:

                                                                    (7.14)

Среднее квадратическое отклонение вычисляется по формуле (7.12).

Замечание 2. Если все возможные значения непрерывной случайной величины не выходят за пределы интервала [a, b], то интегралы в формулах (7.13) и (7.14) вычисля-ются в этих пределах.

Пример. Плотность распределения случайной величины Х имеет вид:

                               

Найти М(Х), D(X), σ.

Решение.


 
Числовые характеристики случайных величин, имеющих некоторые стандартные законы распределения.

1. Биномиальное распределение.

Для дискретной случайной величины Х, представляющей собой число появлений события А в серии из п независимых испытаний (см. лекцию 6), М(Х) можно найти, используя свойство 4 математического ожидания. Пусть Х1 – число появлений А в первом испытании, Х2 – во втором и т.д. При этом каждая из случайных величин Хi задается рядом распределения вида

Xi

0

1

pi

q

p

 Следовательно, М(Хi) = p. Тогда

Аналогичным образом вычислим дисперсию: D(Xi) = 0²·q + 1²·pp²= pp² = p(1 – p), откуда по свойству 4 дисперсии

2. Закон Пуассона.

Если р(Х = т) = , то М(Х) =  (использо-валось разложение в ряд Тейлора функции ех).

Для определения дисперсии найдем вначале М(Х2) =

=

Поэтому D(X) = a² + a – a² = a.

Замечание. Таким образом, обнаружено интересное свойство распределения Пуассона: математическое ожидание равно дисперсии (и равно единственному параметру а, определяющему распределение).

3. Равномерное распределение.

Для равномерно распределенной на отрезке [a, b]  непрерывной случайной величины  то есть математическое ожидание равномерно распределенной случайной величины равно абсциссе середины отрезка  [a, b] .

Дисперсия

.

4. Нормальное распределение.

Для вычисления математического ожидания нормально распределенной случайной величины воспользуемся тем, что интеграл Пуассона .

( первое слагаемое равно 0, так как подынтегральная функция нечетна, а пределы интегрирования симметричны относительно нуля).

.

Следовательно, параметры нормального распределения (а и σ) равны соответствен-но математическому ожиданию и среднему квадратическому отклонению иссле-дуемой случайной величины.


© ПГАТИ. Кафедра высшей математики.
Site Created by MDL Group - © 2005–2006 MDL Group. All rights reserved.